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Abstract. In this paper, Weisner’s group theoretic method is utilized to obtain the generating
relations for the generalized hypergeometric polynomial setUn(β; γ ; x). To derive the elements
of Lie algebra, a suitable interpretation to the indexn is given. The generating relations are followed
by its applications to the classical orthogonal polynomials, namely the Laguerre, Meixner, Gottlieb,
Krawtchouk and Meixner–Pollaczek polynomials. Many results obtained as applications are known
but some of those presented here are believed to be new.

1. Introduction

Recently, Bajpai and Arora [1] studied some properties of the generalized polynomial
set Un(β; γ ; x), such as semi-orthogonality and an integral involving Fox’sH -function.
Hypergeometric polynomials (and hypergeometric series) in one and more variables arise
naturally and rather frequently in a wide variety of problems in theoretical physics,
applied mathematics, engineering sciences, statistics and operations research. In fact, a
considerable field of physical and quantum mechanical situations (such as Schrödinger’s
wave mechanics) and various types of distributions in probability theory lead naturally to
such classical orthogonal polynomials as the Laguerre, Meixner, Gottlieb, Krawtchowk and
Meixner–Pollaczek polynomials. Also, the theory of generating relations for generalized
hypergeometric polynomials play an important role in the problems of mathematical physics.

The principle objective of this paper is to derive some more interesting bilateral (or bilinear)
generating relations forUn(β; γ ; x) using Weisner’s group-theoretic method [2] by giving an
interpretation to the indexn. The useful ness of this method is that it yields a set of, at
least, three generating relations. In an entire investigation, for the generalized polynomial
setUn(β; γ ; x), six generating relations are derived followed by its applications to the sets of
classical orthogonal polynomials, namely the Laguerre, Meixner, Gottlieb, Krawtchouk and
Meixner–Pollaczek polynomials [3]. Many results obtained as applications are known but
some of those presented here are believed to be new.

2. Definition

Bajpai and Arora [1] studied some properties of the generalized hypergeometric polynomial
set

Un(β; γ ; x) = xn2F1

[
−n, β; γ ; 1

x

]
(2.1)
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wheren is a non-negative integer andx is any non-zero complex variable.β, γ are independent
of n for if β, γ are dependent uponn then many properties which are valid forβ, γ independent
of n fail to be valid. The aim of the present paper is to derive some more bilinear and bilateral
generating relations by Weisner’s group-theoretic method.

These polynomialsUn(β; γ ; x) satisfy the following descending and ascending recurrence
relations, respectively:

DUn(x) = nUn−1(x) (2.2)

DUn(x) = 1

x(1− x) {(γ + n)Un+1(x) + [(n + β)− (γ + 2n)x]Un(x)}. (2.3)

These two independent differential recurrence relations determine the linear ordinary
differential equation

x(1− x)D2Un(x)− [(n + β − 1)− (γ + 2n− 2)x]DUn(x)− n(γ + n− 1)Un(x) = 0 (2.4)

where D≡ d/dx. The proofs of these results are obvious.

Applications

(1)

Lim
β→∞

{
β−nUn

(
β; 1 +α; β

x

)}
= n!

(1 +α)n
x−nL(α)n (x) (2.5)

whereL(α)n (x) is the Laguerre polynomial [4, p 200].
(2)

Un(−y; γ ; (1− ρ−1)−1) = (1− ρ−1)−nMn(y; γ, ρ) (2.6)

provided

γ > 0 0< ρ < 1 y = 0, 1, 2, . . .

whereMn(y; γ, ρ) is the Meixner polynomial [5, p 75].
(3)

Un(−y; 1; (1− eλ)−1) = (e−λ − 1)−nφn(y, λ) (2.7)

whereφn(y, λ) is the Gottlieb polynomial [4, p 303].
(4)

Un(−y;−N;P) = PnKn(y;P,N) (2.8)

provided

0< P < 1 y = 0, 1, 2, 3, . . . , N

whereKn(y;P,N) is the known Krawtchouk polynomial [5, p 75].
(5)

Un(λ + iy; 2λ; (1− e−2iφ)−1) = n!(2i)−n

(2λ)n
cosecn φP λn (y;φ) (2.9)

wherepλn(y;φ) is the known Meixner–Pollaczek polynomial [6, p 221].
(6)

Lim
β→∞

{
β−nUn

(
β; 1 +α − n; β

x

)}
= (−1)n

(1 +α − n)n Cn(α; x) (2.10)

whereCn(α; x) is the known Poisson–Charlier polynomial [5, p 41].
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Remark. One must be careful in deriving the generating relations for the Poisson–Charlier
polynomials with the help of the above result. Hereα is dependent uponn which should be
considered when obtaining its applications.

3. Group-theoretic discussion

Let us write the differential equation (2.4) in operator functional notation as

L

(
x,

d

dx
, n

)
= x(1− x)D2 − [(n + β − 1)− (γ + 2n− 2)x]D − n(γ + n− 1). (3.1)

In order to use Weisner’s method, we now construct from (2.4) the following partial
differential equation by replacing d/dx by ∂/∂x, n by y∂/∂y andUn(x) by u(x, y):[
x(1− x) ∂

2

∂x2
+ (2x − 1)y

∂2

∂x∂y
− y2 ∂

2

∂y2

+

{
(γ − 2)x − β + 1

}
∂

∂x
− γy ∂

∂y

]
u(x, y) = 0 (3.2)

whereu(x, y) = ynUn(x) is a solution of (3.2).
LetL represent the partial differential operator of (3.2), i.e.

L = L
(
x,

∂

∂x
, y

∂

∂y

)
≡ x(1− x) ∂

2

∂x2
+ (2x − 1)y

∂2

∂x∂y

−y2 ∂
2

∂y2
+

{
(γ − 2)x − β + 1

}
∂

∂x
− γy ∂

∂y
. (3.3)

We now seek linearly-independent lowering and raising differential operatorsB andC each
of the form

A1(x, y)
∂

∂x
+A2(x, y)

∂

∂y
+A3(x, y)

such that

B[ynUn(β; γ ; x)] = anUn−1(β; γ ; x)yn−1

C[ynUn(β; γ ; x)] = bnUn+1(β; γ ; x)yn+1 (3.4)

wherean andbn are expressions inn which are independent ofx andy, but not necessarily of
the parametersβ andγ . EachAi(x, y), i = 1, 2, 3, on the other hand, is an expression inx
andy which is independent ofn, but not necessarily of the parametersβ andγ .

This necessitates the bringing into use of the recurrence relations (2.2) and (2.3). With
the help of (2.2) and (2.3), it follows from (3.4) that

C = xy(1− x) ∂
∂x

+ (2x − 1)y2 ∂

∂y
+ (γ x − β)y

B = −y−1 ∂

∂x
. (3.5)

To find the group of operators, let us writeA ≡ y∂/∂y.
Then we have the operatorsA,B andC which satisfy the following commutator relations:

[A,B] = −B [A,C] = C [B,C] = −2A− γ. (3.6)

Now, every linear differential operator of the first order generates a one-parameter Lie group
[2, p 27]; therefore, these commutator relations show that the set of operators{1, A, B,C}
generate a three-parameter Lie group [7].



992 I K Khanna and V Srinivasa Bhagavan

Furthermore, we would like to prove that these operators commute with the partial
differential operatorL. We expressL in terms of these operators.

We know that

Lu = x(1− x)∂
2u

∂x2
+ (2x − 1)y

∂2u

∂x∂y
− y2∂

2u

∂y2
+ [(γ − 2)x − β + 1]

∂u

∂x
− γy ∂u

∂y

and

CBu = −x(1− x)∂
2u

∂x2
− (2x − 1)y

∂2u

∂x∂y
− [(γ − 2)x − β + 1]

∂u

∂x
.

We get

[L +CB]u = −A2u− (γ − 1)Au.

Therefore,

Lu = −[CB +A2 + (γ − 1)A]u. (3.7)

By using the commutator relations we prove that the operatorsA, B andC commute withL
and hence withR = r1A+r2B +r3C +r4 where eachri (i = 1, 2, 3, 4) is an arbitrary constant,
R is the set of differential operators.

This Lie algebra determines a root system and a Weyl group. The extended form of the
group generated by each of the operatorsA, B andC is as follows:

eaAf (x, y) = f (x, eay) (3.8)

ebBf (x, y) = f
(
x − b

y
, y

)
(3.9)

ecCf (x, y) = (1− cxy)β−γ [1 + cy(1− x)]−β

×f
(
x[1 + cy(1− x)], y

(1− cxy)[1 + cy(1− x)]
)

(3.10)

wherea, b andc are arbitrary constants andf (x, y) is an arbitrary function.
Then it is evident that

ecC ebBf (x, y) = (1− cxy)β−γ [1 + cy(1− x)]−βf (ξ, n) (3.11)

where

ξ = {1 + cy(1− x)}
{
xy − b(1− cxy)

y

}
η = y

{1 + cy(1− x)}{1− cxy} .

4. Generating functions

4.1. Derivation from the operator (A− ν)

We see thatA generates a trivial group. Sinceu(x, y) = yνUν(x) is a solution of the
simultaneous equationsLu = 0 and(A − ν)u = 0 for arbitraryν. Therefore we determine
generating functions ofUn(x) by finding ebB+cC [yνUν(x)].

We need to consider three cases.
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Case 1.Supposeb = 1, c = 0. Since for an arbitrary functionf (x, y)

eBf (x, y) = f
(
x − 1

y
, y

)
we find

eBf (x, y) = yνUν(x − y−1). (4.1)

SinceB[yνUν(x)] = (−ν)yν−1Uν−1(x), we have

eB [yνUν(x)] =
ν∑
n=0

(−ν)n
n!
Uν−n(x)yν−n. (4.2)

Equating expressions (4.1) and (4.2) and replacingy−1 by t , we get

Uv(x − t) =
ν∑
n=0

(−ν)n
n!
Uν−n(x)tn. (4.3)

Case 2.Supposeb = 0, c = 1. In this case we have

eC [yνUν(x)] = (1− xy)β−γ−ν{1 +y(1− x)}−β−νyνUν{x + xy(1− x)}. (4.4)

On the other hand,

eC [yνUν(x)] =
∞∑
n=0

(γ + ν)n
n!

Uν+n(x)y
ν+n. (4.5)

Equating expressions (4.4) and (4.5) and replacingy by t , we get

(1− xt)β−γ−ν{1 + t (1− x)}−β−νUν{x + xt (1− x)} =
∞∑
n=0

(γ + ν)n
n!

Uν+n(x)t
n. (4.6)

Case 3.Supposebc 6= 0, without any loss of generality we can choosec = 1 andb = −1/w
so we have
∞∑
n=0

ν∑
k=0

(−ν)k(γ + ν − k)n
n!k!

(
− 1

w

)k
Uν+n−k(x)yn−k

= (1− xy)β−γ−ν{1 +y(1− x)}−β−νUν
×
{

[1 + y(1− x)][xy +w−1(1− xy)]
y

}
. (4.7)

Applications. Furthermore, using the conditions of section 2 in (4.3) and (4.6) we have:
(1)

ν∑
n=0

(−α − ν)nL(α)ν−n(x)tn
n!

= (1− t)νL(α)ν
(

x

1− t
)
.

(2)
∞∑
n=0

(ν + n)!L(α)ν+n(x)t
n

ν!n!
= (1− t)−1−α−ν exp

[ −xt
1− t

]
L(α)ν

(
x

1− t
)
.

Here ifν = 0, we have
∞∑
n=0

L(α)n (x)t
n = (1− t)−1−α exp

[ −xt
1− t

]
.
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(3)
ν∑
n=0

(−ν)n(1− ρ−1)nMν−n(y; γ, ρ)tn
n!

= {1− t (1− ρ−1)}νMν

(
y; γ,

(
1− t (1− ρ−1)

ρ−1− t (1− ρ−1)

))
provided

γ > 0 0< ρ < 1 y = 0, 1, 2, . . . .

(4)
ν∑
n=0

(γ + ν)n(1− ρ−1)−nMν+n(y; γ, ρ)tn
n!

= {1− t (1− ρ−1)−1}−(y+ν+γ ){1− tρ−1(1− ρ−1)−1}y

×Mν

(
y; γ,

(
ρ − 1− t

1− t − ρ−1

))
provided

γ > 0 0< ρ < 1 y = 0, 1, 2, . . . .

(5)
ν∑
n=0

(−ν)n(e−λ − 1)nφν−n(y; λ)tn
n!

= {1− t (e−λ − 1)}νφν
(
y, log

(
eλ(1− eλ)−1− t
(1− eλ)−1− t

))
.

(6)
∞∑
n=0

(ν + 1)n(e−λ − 1)−nφν+n(y, λ)t
n

n!

= {1− t (1− e−λ)−1}−y−1{1− t eλ(1− eλ)−1}y−ν

·φν
(
y, log

(
1− t − eλ

(1− eλ)−1− t
))
.

(7)
∞∑
n=0

(−ν)nP−nKν−n(y;P,N)tn
n!

=
(

1− t

P

)ν
Kν(y;P − t, N)

provided

0< P < 1 y = 0 1, 2, . . . , N.

(8)
∞∑
n=0

(ν −N)nP nKν+n(y;P,N)tn
n!

= (1− P t)N−y−ν{1 + t (1− P)}yKν(y;P + P t(1− P))
provided

0< P < 1 y = 0, 1, 2, . . . , N.
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(9)
∞∑
n=0

(1− 2λ− ν)n(2i sinφ)nP λν−n(y;φ)tn
n!

= Pλν
[
y,

1

2i
log

(
t − (1− e−2iφ)−1

t − 1− (1− e−2iφ)−1

)]
.

(10)
∞∑
n=0

(1 + ν)ncosecn φP λν+n(y;φ)tn
n!(2i)n

= Pλν
[
y,

1

2i
log

(
e−2iφ − 1− t
1− e−2iφ − t

)]
.

4.2. Derivation from operators not conjugate to (A− ν)

Let S = ecCebB , whereb andc are arbitrary constants.
Now according to McBride [2] we find that

ebBC e−bB = −2bA− b2B +C − bγ
ebBA e−bB = A + bB

ecCA e−cC = A− cC
ecCB e−cC = 2cA +B − c2C + cγ.

Consider the set of linear differential operators{R/R = r1A+r2B+r3C+r4, for all combinations
of zero and non-zero coefficients except forr1 = r2 = r3 = 0}.

We find that

S(A− ν)S−1 = ecC ebB(A− ν) e−bB e−cC

= (1 + 2bc)A + bB − c(1 +bc)C + (bcγ − ν).
Then

r1 = 1 + 2bc r2 = b r3 = −c(1 +bc).

From two of these three equations we can findbandc in terms ofr1, r2 andr3. The third equation
then imposes a restrictive relation on theri (i = 1, 2, 3) which implies thatr2

1 + 4r2r3 = 1.
Therefore, (A− ν) is not conjugate to operators for whichr2

1 + 4r2r3 = 0.
We consider the following cases.

Case 1.If r1 = 0, r2 = 1, r3 = 0, we seek a solution of the systemLu = 0 and(B +λ)u = 0,
whereλ is a non-zero constant.

For convenience, we chooseλ = 1 and write the equation asLu = 0 and(B + 1)u = 0.
A solution of this system is

u(x, y) = exy1F1[β; γ ;−y].

If this function is expanded in powers ofy, we get

exy1F1[β; γ ;−y] =
∞∑
n=0

Un(β; γ ; x)yn
n!

. (4.8)

Case 2.If r1 = 2, r2 = 1, r3 = −1, we are led to this choice by considering ecC(B−w) e−cC ,
wherew is a non-zero constant. We find that

ecC(B − w) e−cC = 2cA +B − c2C + (cγ − w).
If we letc = 1, we getr1 = 2,r2 = 1,r3 = −1. Since this choice satisfies the above conditions,
we may determine a solution of the systemLu = 0 and(2A + B − C + γ − w)u = 0. From
the generating function of (4.8), by replacingy by−wy we get

u(x,−wy) = e−xyw1F1[β; γ ;wy].
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We know that for an arbitrary functionf (x, y)

eCf (x, y) = (1− xy)β−γ {1 +y(1− x)}−βf
(
x{1 +y(1− x)}, y

(1− xy){1 +y(1− x)}
)
.

Thus

eCu(x,−wy) = (1− xy)β−γ {1 +y(1− x)}−β

× exp

(−xyw
1− xy

)
1F1

[
β; γ ; wy

(1− xy)(1 +y(1− x))
]

=
∞∑
n=0

(1− xy)β−γ−n{1 +y(1− x)}−β−n(−wyn)
n!

Un{x + xy(1− x)}

(by using 4.8).

With the help of (4.6), we get

(1− xy)β−γ {1 +y(1− x)}−β exp

(−xyw
1− xy

)
1F1

[
β; γ ; wy

(1− xy){1 +y(1− x)}
]

=
∞∑
n=0

Un(β; γ ; x)L(γ−1)
n (w)yn. (4.9)

Remark. The corresponding bilateral (or bilinear) generating relations for the Laguerre,
Meixner, Gottlieb, Krawtchouk and Meixner–Pollaczek polynomials can be deduced from
(4.9) by using the conditions of section 2.

Case 3. Let r1 = 0, r2 = 0, r3 = 1. We seek the solution of the systemLu = 0 and
(C + φ)u = 0, whereφ is a non-zero constant. We may avoid actually solving this system by
noting that

ebB ecC(B + 1) e−cC e−bB = 2c(1 +bc)A + (1 +bc)2B − c2C + γ c(1 +bc) + 1.

If we chooseb = 1, c = −1, we get

eB e−C(B + 1) eC e−B = −C + 1.

Therefore, we can obtain a solution ofLu = 0 and(C−1)u = 0 by transforming the generating
function (4.8) as

eB e−C{exy1F1[β; γ,−y]}
= y−γ xβ−γ [−(1− x)]−β exp

(
1− 1

xy

)
1F1

[
β; γ ; 1

xy(1− x)
]
.

If we let y = −1/t and expand in powers oft we get

exp

(
t

x

)
1F1

[
β; γ ; −t

x(1− x)
]
=
∞∑
n=0

Un(β; γ ; 1− x)
n!

[
t

x(1− x)
]n
. (4.10)

Applications. The following results can be obtained from the generating function (4.8) by
using the conditions of section 2.

(1)
∞∑
n=0

x−nL(α)n (x)y
n

(1 +α)n
= exp(y/x)0F1[−; 1 +α;−y]

which can be rewritten as
∞∑
n=0

L(α)n (x)z
n

(1 +α)n
= exp(z)0F1[−; 1 +α;−xz].
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(2)

∞∑
n=0

(1− ρ−1)−nMn(t; γ, ρ)yn
n!

= exp{y(1− ρ−1)−1}1F1[−t; γ ;−y]

which is equivalent to

∞∑
n=0

Mn(t; γ, ρ)zn
n!

= exp(z)1F1[−t; γ ;−z(1− ρ−1)]

provided

γ > 0 0< ρ < 1 y = 0, 1, 2, . . . .

(3)

∞∑
n=0

(e−λ − 1)−nφn(t; λ)yn
n!

= exp{y(1− eλ)−1}1F1[−t; 1;−y]

which can be reduced to
∞∑
n=0

φn(t; λ)zn
n!

= exp(z)1F1[1 + t; 1;−z(1− e−λ)].

(4)

∞∑
n=0

PnKn(t;P,N)yn
n!

= exp(py)1F1[−t;−N;−y]

which is equivalent to

∞∑
n=0

Kn(t;P,N)zn
n!

= exp(z)1F1[−t;−N;−zP−1]

provided

0< P < 1 y = 0, 1, 2, . . . , N.

(5)

∞∑
n=0

(2i)−ncosecn φP λn (x;φ)yn
n!

= exp[y(1− e2iφ)−1]1F1[λ + ix; 2λ;−y]

which can be reduced to
∞∑
n=0

Pλn (x;φ)zn
n!

= exp[z eiφ ]1F1[λ + ix; 2λ;−z eiφ(1− e−2iφ)].

These are all well known generating functions in one form or another for the Laguerre, Meixner,
Gottlieb, Krawtchouk and Meixner–Pollaczek polynomials, respectively.
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